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The conditions for the occurrence of different multiple resonances in an excitable neuron model are analyzed
numerically. It is shown that the excitable system may display both stochastic and coherence resonance, in
response to periodic stimuli in the presence of different intensities of additive and parametric noises. It is found
that double coherence resonances may take place in the low-amplitude oscillation regimes, and coherence
resonance may persists even in the weak oscillatory regimes for control parameters slightly larger than the
Hopf bifurcation point, where the system is in the incipient stage of large-amplitude excitation regime.
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Noise-induced resonance behavior in bistable, excitable,
and other nonlinear dynamical systems near their bifurcation
points has attracted considerable attention in recent years
f1–7g. In a recent experimental studyf8g on the photosensi-
tive Belousov-Zhabotinsky reaction system stochasticsSRd
and coherencesCRd resonances are found to occur at differ-
ent noise intensities for an excitable system driven by noise
and a periodic signal. It is therefore interesting to investigate
the conditions under which such kinds of double resonance
si.e., stochastic and coherence resonances happening at dif-
ferent noise intensities for the same dynamical systemd may
occur. Multiple resonance phenomena have also been ob-
served in a numerical study on the CO+O2 catalytic oxida-
tion reaction system, subject to multiplicative noisef9g. The
mechanisms underlying SR and CR in excitable systems are
well understood now. SR occurs when the mean escape time
to threshold and the period of external forcing match. For
excitable systems the situation may be complicated by the
existence of system intrinsic oscillation, induced by the pres-
ence of an optimal amount of noisef10g. The interplay of
external forcing and the noise-induced oscillation exhibits
typical periodic resonance features, characterized by the ap-
pearance of various phase-locking modes. On the other hand,
CR takes place when the frequency of noise-induced oscilla-
tion coincides with that of the system intrinsic oscillation,
related usually to the Hopf bifurcation. From the time-scale
matching theory it seems quite intriguing that double reso-
nances occur in an autonomous dynamical system. It is
therefore important to investigate under what conditions
those multiple resonances may be observed for it may in-
volve the selective enhancement of internal and external sig-
nals.

In this paper we analyze the conditions under which mul-
tiple resonance may be observed for different noise intensi-
ties in the same excitable system, focusing our attention on
the roles played by forcing frequency and system bifurcation
parameters. To this end we use a two-dimensional discrete-
time neuron model system introduced by Rulkovf11g, which
displays complex dynamical behaviors as many other con-
tinuous dynamical systems do:

xn+1 = a/s1 + x2d − yn + A sinsvnd + Djn,

yn+1 = yn − bsxn + 1d, s1d

where a and b are parameters that determine the model’s
dynamical behavior. The iteration numbern plays the role of
a discrete-time index. The fast variablex stands for the neu-
ron cell membrane voltage, andy models the slow variation
of ion concentration near the neuron membrane. The ampli-
tude and frequency of periodic stimulus are denoted byA
and v, respectively.jn is the Gaussian white noise, andD
represents the noise intensity. In the absence of external per-
turbations, for the time-scale parameterb=0.001, the model
system undergoes a Hopf bifurcation ata=2, and shows pe-
riodic oscillation for 2,a,4, chaotic bursting for 4,a
,4.6, etc. It has been shown that for parametera near the
Hopf bifurcation pointaH=2.0, the systems1d can display
SR and CRf12g. In addition to the additive external pertur-
bations as described in Eq.s1d, we consider also the Rulkov
mode under multiplicative noise and periodic forcing,

xn+1 = an/s1 + x2d − yn,

yn+1 = yn − bsxn + 1d, s2d

where the control parameteran is described by

an = a + A sinsvnd + Djn. s3d

For simplicity, we restrict the analysis to only additive or
multiplicative external stochastic and periodic driving. The
case in which the system is driven simultaneously by both
additive and multiplicative perturbations will be presented
elsewhere. To quantify the structure of spikes induced by
external perturbations we use the coefficient of variation of
the interspike intervals defined by

R= ÎVarstsd/ktsl s4d

wherektsl and Varstsd are the mean and the variance of the
interspike intervalts. The regular spiking is characterized by
the minimum ofR, while irregular excitations correspond to
R close to 1. For excitable systems, SR is identified by com-
parison of the average spiking frequency with the periodic
forcing frequency, which occurs at relatively low noise in-
tensity. CR corresponds to a balance between the interspike
interval of noise-induced spiking and the period of the sys-
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tem’s intrinsic oscillation near the Hopf bifurcation point.
Before proceeding to the study of noise-induced coopera-

tive oscillations, let us investigate first the dependence of the
system’s response to pure periodic stimuli on forcing fre-
quency. Figure 1 shows the amplitude threshold for firing as
a function of forcing frequency. For additive periodic forcing
we find that there exist frequency-sensitive domains in the
amplitude-frequency space where periodic forcing may in-
duce excitation. For a given amplitude, there is an upper
frequency limitvcsAd such that forv.vcsAd sinusoidal sig-
nals cannot trigger a spike. From Fig. 1sad we see that the
frequency-sensitive firing domain is bordered by a U-shaped
curve with some complicated fine structures at the boundary
areas. As will be shown later, the frequency-sensitive feature
of an excitable system has an important impact on the reso-
nance behavior. In Fig. 1sbd we plot the amplitude threshold
curve for parametric drivings2d. We found a similar
U-shaped frequency-sensitive structure. Here even the low-
frequency boundary displays riddling at small forcing ampli-
tude. It seems that the insensitivity of the excitable Rulkov
model to sinusoidal signals of high enough frequency per-
sists even for very large forcing amplitude. In this kind of
excitable system, the simple crossing of a bifurcation point
in the system control parameter does not lead to spiking, and
therefore the sinusoidal signals with their amplitude and fre-
quency outside the frequency-sensitive regions should be
taken as subthreshold. On the other hand, inside the excita-
tion region, different non-self-oscillating regimes may be ob-
served. For a given amplitude a typical scenario is formed by
successive frequency intervals of phase-locking patterns 1:2,

1:3, 1:4, etc., with possible irrational phase-locking modes in
between, revealing the structure of the devil’s staircase.
Since the system is in the firing regime, a stimulus pulse may
induce several spikes, depending on the forcing amplitude.
So one finds that the output frequency increases with the
input one. Figure 2 shows the ratio of the output frequency
and the forcing frequency as a function of the latter for ad-
ditive and multiplicativesparametricd periodic driving. As
shown inf13g the phase locking, period doubling, and pos-
sible chaotic phenomena in externally driven excitable sys-
tems can be attributed to the competition between the system
intrinsic frequency and the external one, similar to the well-
known phase-locking structure of driven self-oscillator and
circle maps. It is interesting to note that in the case of mul-
tiplicative forcing, even for suprathreshold sinusoidal stimuli
with a0+A.2.0, there still exist frequency-sensitive excita-
tion domains in the amplitude-frequency plane. The inactiv-
ity of the excitable Rulkov model for certain high-frequency
signals is related to the duration time for a pulse to stay over
the excitation threshold. This observation is consistent with
our findings for the excitable FitzHugh-Nagumo neuron
model, but is in contrast with other excitable systems such as
the Hindmash-Rose neuron modelf14g and the photosensi-
tive Belousov-Zhabotinsky reaction system, where suprath-
reshold periodic signals of arbitrary frequency produce exci-
tation. It should be stressed that the amplitude threshold
phase diagrams are the basis for our understanding of the
effects of forcing frequency on the resonance behavior of the
excitable Rulkov model system.

s1d Dependence of SR on forcing frequency. SR occurs
when a match between the period of external forcing and the
first-passage time is achieved. If the periodic stimuli are
weak, SR is expected to be observed for low noise strength.
In this case CR is the dominant resonance pattern at interme-
diate and large noise intensity. It is expected that as the forc-
ing frequency increases, the optimal noise intensity for SR
shifts toward larger noise strength accordingly. Figure 3sad
plots the coefficient of variationRsDd as a function of the
noise intensityD for several forcing frequencies fora
=1.99 andA=0.025 for additive stochastic and periodic forc-

FIG. 1. sColor onlined Plot of the amplitude-frequency threshold
for Rulkov model withsad additive periodic forcing, andsbd para-
metric or multiplicative periodic driving. The system control param-
eter isa=1.99. For a given forcing amplitude, the circles stand for
the left boundary of the firing domains, and the triangles for the
right one.

FIG. 2. sColor onlined Typical devil’s staircase structure of the
phase-locking patterns for periodically driven Rulkov model in the
firing regimes, for addictive forcing atA=0.03 scirclesd and para-
metric driving atA=0.016 strianglesd, respectively.vin represents
the frequency of the input signal, andvout is that for the system
output. Here the output frequency is calculated from the mean in-
terspike interval, i.e.,vout=1/ktsl.
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ing. It is shown clearly that the forcing frequency has a dras-
tic impact on SR, but little effect on CR. As the forcing
frequency is increased and is approaching the firing-
nonfiring boundary from below in the amplitude-frequency
space, the SR becomes stronger and disappears once the fre-
quency is in the firing region. At first glance, it seems to be
rather puzzling that the location of SR shifts to lower values
of noise intensityD, instead of to larger values as required
by the match between the first-passage time induced by noise
and the intrinsic oscillation period of the system. Neverthe-
less, if we take into account the fact that the system ap-
proaches the firing domain asv increases, it is obvious that
less noise is required when the system is closer to the firing
threshold. Another intriguing phenomenon is the noise-
induced phase-locking patterns as illustrated by the staircase
structure of the resonance curve for the noise intensity be-
tweenD=10−10 and 10−2. For instance, at forcing frequency
v=4p310−4, we find that vout:vin=2:1 for 10−8,D
,10−6, and vout:vin=3:1 for 10−5,D,10−3, approxi-
mately. The optimal noise intensity for CR, on the other
hand, remains almost unchanged. As the forcing frequency is
further increased, the system enters the frequency-sensitive
firing regimes, where weak noise can destroy the regular
spiking, and generate a kind of bursting mode. It is remark-
able that in the firing regime we still observe CR, for the
system’s response at the intermediate through large noise in-
tensity is completely dominated by the noise. In Fig. 3sbd we

plot R as a function of the noise intensityD for multiplica-
tive or parametric noise and periodic perturbations. Here we
see that the double-valley resonance curve that appears at
low frequency is replaced by a single-valley one as the fre-
quency increases. While the position of CR remains un-
changed, the location of SR shifts to larger noise intensity,
which is consistent with the requirement of a time-scale
match between the first-passage time induced by noise and
the period of external forcing, but in sharp contrast with the
case of additive forcing.

s2d Double CR in small-amplitude oscillation regimes. In
the context of CR, the condition for the occurrence of mul-
tiple resonances at different noise intensities may be attrib-
uted to the existence of multifrequency oscillations. Figure 4
shows the double CR for the Rulkov neuron model in the
absence of external periodic forcing, i.e.,A=0. We find that
the first CR occurs only within a narrow range of the control
parametera, and its coherence effect is much weaker than
that of the secondsthe standardd CR. It is seen that the opti-
mal noise intensity for the occurrence of CR,DCR, decreases
with increasinga. The mechanism of the leftmost resonance
valley may be understood as follows. For 1.998,a,1.999
the Rulkov model system exhibits low-amplitude oscillation,
and its frequency decreases with increasinga. So it is easy to
understand why the optimal noise intensity at which the
noise-induced oscillation matches the intrinsic low-
amplitude oscillation moves to smaller noise strength asa
increases. Interestingly we find this phenomenon for Rulkov
model with additive and multiplicative noise, as well. We
notice that for the CO+O2 catalytic oxidation reaction sys-
tem discussed inf9g, there exists also a low-amplitude oscil-

FIG. 3. sColor onlined Stochastic and coherence resonance in
the Rulkov model. The coefficient of variationR is plotted as a
function of the noise intensity forsad additive external perturbations
with forcing amplitudeA=0.025 and forcing frequencyv=2p
310−4, 2.5p310−4, 3p310−4, 3.5p310−4, and 4p310−4 sfrom
top to bottomd, andsbd multiplicative modulations atA=0.0099 and
v=4p310−4 scirclesd, 8p310−4 ssquaresd, 1.2p310−3 strianglesd,
and 1.6p310−3 sdiamondsd.

FIG. 4. sColor onlined Double coherence resonance observed in
Rulkov neuron model undersad additive andsbd multiplicative
noise driving, fora=1.9989scirclesd, 1.999sdiamondsd, and 1.9992
strianglesd.
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lation range, with its amplitude decreasing with the distance
of the control parameter to the bifurcation point. Since the
peak height of the resonant oscillation is used as a measure
in that work, it is difficult to infer the mechanism behind the
very intriguing double-CR phenomenon, where the leftmost
CR appears to be stronger than the rightmost one. In our
case, the intrinsic frequency of small-amplitude oscillation is
a function of the bifurcation parametera. Weak noise cannot
perturb the system’s dynamics, and strong enough noise will
drive the system into oscillatory regimes. Thus, there exists
an optimal noise intensity that produces this weak-noise CR.

s3d CR in oscillatory regimes. For the system control pa-
rameter a.1.999, the Rulkov model displays spikes, or
large-amplitude oscillations. As already illustrated in Fig. 4,
CR may be observed in this parameter regimes. In Fig. 5 we
plot R against the noise intensityD, for a slightly larger than
2. This happens because the oscillation in this parameter
range is very weak, and is strongly affected by external per-
turbations. Interestingly this internal SRf15g occurs at the
same noise intensity as the CR whena,2. As a increases
further into the strong-oscillation regime, the peak related to
noise-induced irregularity disappears. An inspection of the
time evolution of the system variables fora=2.0 shows that
noise produces irregular suppression of firing atD=0.001,
and more regular firing is recovered atDCR=0.02, approxi-
mately.

In conclusion, in this work we present a detailed numeri-
cal analysis of multiple-resonance behaviors in the Rulkov
neuron model, which proves to be an efficient vehicle for
instigation of the dynamical response of more complex ex-
citable neuron model systems to various stochastic and peri-
odic stimuli. We studied the conditions for which the system
can respond to different noise through SR and CR. We ex-
plained the mechanism for the appearance of double CR as
the existence of a continuously changed oscillation fre-
quency as a function of the control parametera after the
Hopf bifurcation. The CR in the firing regimes and CR in the
oscillatory states are attributed to the weak, initial stage of
the oscillation, which turns out to be very vulnerable to ex-
ternal noise. Another interesting phenomenon exhibited by
the Rulkov neuron model is anticoherence or incoherence
maximization, characterized byR.1 f16,17g. The anticoher-

ence resonance may occur for different physical situations.
For the FitzHugh-Nagumo model it occurs at low noise in
the presence of damped subthreshold oscillationsf17g, while
for the leaky integrate-and- fire model, the incoherence
maximization appears in the noise-activated firing regime for
sufficiently small values of the absolute refractory period
f16g. From the time evolution of the system variable, the
maxima of R for the Rulkov model seem to be related to
the transition from random bursting and complete irregular
spiking.
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FIG. 5. sColor onlined Coherence resonance in the oscillatory
regimes for Rulkov model subject tosad additive andsbd multipli-
cative stochastic and periodic perturbations. The system control pa-
rametera=2.0, 2.0025, 2.005, 2.01, and 2.05 insad, and a=2.0,
2.001, 2.005, 2.01, and 2.1 insbd sfrom top to bottomd.
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