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Multiple dynamical resonances in a discrete neuronal model
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The conditions for the occurrence of different multiple resonances in an excitable neuron model are analyzed
numerically. It is shown that the excitable system may display both stochastic and coherence resonance, in
response to periodic stimuli in the presence of different intensities of additive and parametric noises. It is found
that double coherence resonances may take place in the low-amplitude oscillation regimes, and coherence
resonance may persists even in the weak oscillatory regimes for control parameters slightly larger than the
Hopf bifurcation point, where the system is in the incipient stage of large-amplitude excitation regime.
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Noise-induced resonance behavior in bistable, excitable, Vo1 =Yn— DX+ 1), (1)
and other nonlinear dynamical systems near their bifurcation )
points has attracted considerable attention in recent yeatéherea andb are parameters that determine the model's
[1-7]. In a recent experimental stud§] on the photosensi- dynamical behavior. The iteration numbreplays the role of
tive Belousov-Zhabotinsky reaction system stochat$iB) a discrete-time index. The fast variablestands for the_ neu-
and coherencéCR) resonances are found to occur at differ- on cell membrane voltage, arydmodels the slow variation
ent noise intensities for an excitable system driven by nois@f ion concentration near the neuron membrane. The ampli-
and a periodic signal. It is therefore interesting to investigatdude and frequency of periodic stimulus are denotedAby
the conditions under which such kinds of double resonanc@nd o, respectively.¢, is the Gaussian white noise, a
(i.e., stochastic and coherence resonances happening at diPresents the noise intensity. In the absence of external per-
ferent noise intensities for the same dynamical systexay ~ turbations, for the time-scale paramelsr0.001, the model
occur. Multiple resonance phenomena have also been olystem undergoes a Hopf bifurcationaat2, and shows pe-
served in a numerical study on the CO# Eatalytic oxida- riodic oscillation for 2<a<4, chaotic bursting for 4a
tion reaction system, subject to multiplicative noj$& The =~ <4.6, etc. It has been shown that for parameterear the
mechanisms underlying SR and CR in excitable systems arfdopf bifurcation pointa,=2.0, the systenil) can display
well understood now. SR occurs when the mean escape timeR and CR12]. In addition to the additive external pertur-
to threshold and the period of external forcing match. Fofations as described in E(t), we consider also the Rulkov
excitable systems the situation may be complicated by th&1ode under multiplicative noise and periodic forcing,

existence of system intrinsic oscillation, induced by the pres- Xne1 = a7/ (1 +X2) = yp,
ence of an optimal amount of noi$&0]. The interplay of
external forcing and the noise-induced oscillation exhibits Yne1 = Yn— b+ 1), 2

typical periodic resonance features, characterized by the a| there the control parametey, is described by
pearance of various phase-locking modes. On the other hand, )

CR takes place when the frequency of noise-induced oscilla- ap=a+Asin(wn) + D&, 3

tion coincides with that of the system intrinsic oscillation, gqr simplicity, we restrict the analysis to only additive or

related usually to the Hopf bifurcation. From the time-scalemytiplicative external stochastic and periodic driving. The

matching theory it seems quite intriguing that double resocase in which the system is driven simultaneously by both
hances occur in an autonomous dynamical system. It igdditive and multiplicative perturbations will be presented
therefore important to investigate under what conditionse|sewhere. To quantify the structure of spikes induced by

those multiple resonances may be observed for it may inexternal perturbations we use the coefficient of variation of
volve the selective enhancement of internal and external sighe interspike intervals defined by

nals. R

In this paper we analyze the conditions under which mul- R=Var(ty)/(ty (4)
tiple resonance may be observed for different noise intensivhere(ty and Vafrty) are the mean and the variance of the
ties in the same excitable system, focusing our attention Ofhterspike intervat.. The regular spiking is characterized by
the roles played by forcing frequency and system bifurcatiohe minimum ofR, while irregular excitations correspond to
parameters. To this end we use a two-dimensional discretg close to 1. For excitable systems, SR is identified by com-
time neuron model system introduced by Rulkag], which  parison of the average spiking frequency with the periodic
displays complex dynamical behaviors as many other conforcing frequency, which occurs at relatively low noise in-
tinuous dynamical systems do: tensity. CR corresponds to a balance between the interspike

Xne1 = a/(1 +X%) -y, + Asin(wn) + D&, interval of noise-induced spiking and the period of the sys-
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0.0125 FIG. 2. (Color onling Typical devil's staircase structure of the
phase-locking patterns for periodically driven Rulkov model in the
0.01 | firing regimes, for addictive forcing a=0.03 (circles and para-
metric driving atA=0.016 (triangles, respectively.w;, represents
0.0075 the frequency of the input signal, andg,, is that for the system
output. Here the output frequency is calculated from the mean in-
0.005 terspike interval, i.e.wq=1/ts).
0.0025 . S . .
W ﬂg’ 1:3, 1:4, etc., with possible irrational phase-locking modes in
0 i ‘ between, revealing the structure of the devil's staircase.
0 0.005 0.01 0.015 Since the system is in the firing regime, a stimulus pulse may
Frequency (w/2m) induce several spikes, depending on the forcing amplitude.

FIG. 1. (Color onling Plot of the amplitude-frequency threshold So one finds that the output frequency increases with the
for Rulkov model with(a) additive periodic forcing, anéb) para-  input one. Figure 2 shows the ratio of the output frequency
metric or multiplicative _perlodlc _drlvmg. The system_control param- and the forcing frequency as a function of the latter for ad-
eter isa=1.99. For a given forcing amplitude, the circles stand for gitive and multiplicative(parametri¢ periodic driving. As
the left boundary of the firing domains, and the triangles for theghown in[13] the phase locking, period doubling, and pos-
right one. sible chaotic phenomena in externally driven excitable sys-
tem’s intrinsic oscillation near the Hopf bifurcation point.  (€MS can be attributed to the competition between the system

Before proceeding to the study of noise-induced cooperaltrinsic frequency and the external one, similar to the well-
tive oscillations, let us investigate first the dependence of thénown phase-locking structure of driven self-oscillator and
system’s response to pure periodic stimuli on forcing fre-Circle maps. It is interesting to note that in the case of mul-
quency. Figure 1 shows the amplitude threshold for firing adiplicative forcing, even for suprathreshold sinusoidal stimuli
a function of forcing frequency. For additive periodic forcing With ag+A>2.0, there still exist frequency-sensitive excita-
we find that there exist frequency-sensitive domains in thdion domains in the amplitude-frequency plane. The inactiv-
amplitude-frequency space where periodic forcing may indity of the excitable Rulkov model for certain high-frequency
duce excitation. For a given amplitude, there is an uppesignals is related to the duration time for a pulse to stay over
frequency limitw.(A) such that forw > w.(A) sinusoidal sig- the excitation threshold. This observation is consistent with
nals cannot trigger a spike. From Figalwe see that the our findings for the excitable FitzHugh-Nagumo neuron
frequency-sensitive firing domain is bordered by a U-shaped#hodel, but is in contrast with other excitable systems such as
curve with some complicated fine structures at the boundarihe Hindmash-Rose neuron modéH] and the photosensi-
areas. As will be shown later, the frequency-sensitive featuréve Belousov-Zhabotinsky reaction system, where suprath-
of an excitable system has an important impact on the resgeshold periodic signals of arbitrary frequency produce exci-
nance behavior. In Fig.(t) we plot the amplitude threshold tation. It should be stressed that the amplitude threshold
curve for parametric driving(2). We found a similar phase diagrams are the basis for our understanding of the
U-shaped frequency-sensitive structure. Here even the lovwgffects of forcing frequency on the resonance behavior of the
frequency boundary displays riddling at small forcing ampli-€excitable Rulkov model system.
tude. It seems that the insensitivity of the excitable Rulkov (1) Dependence of SR on forcing frequen8R occurs
model to sinusoidal signals of high enough frequency perwhen a match between the period of external forcing and the
sists even for very large forcing amplitude. In this kind of first-passage time is achieved. If the periodic stimuli are
excitable system, the simple crossing of a bifurcation poinweak, SR is expected to be observed for low noise strength.
in the system control parameter does not lead to spiking, ant this case CR is the dominant resonance pattern at interme-
therefore the sinusoidal signals with their amplitude and frediate and large noise intensity. It is expected that as the forc-
quency outside the frequency-sensitive regions should bi&g frequency increases, the optimal noise intensity for SR
taken as subthreshold. On the other hand, inside the excitghifts toward larger noise strength accordingly. Figufa) 3
tion region, different non-self-oscillating regimes may be ob-plots the coefficient of variatiofR(D) as a function of the
served. For a given amplitude a typical scenario is formed byoise intensityD for several forcing frequencies foa
successive frequency intervals of phase-locking patterns 1:%,1.99 andA=0.025 for additive stochastic and periodic forc-

057103-2



BRIEF REPORTS PHYSICAL REVIEW H1, 057103(2005

15 : : 15
(a) (a)
1 1
o o %
05 | — 05 7 X
N
0 , ‘ s ‘ ‘
10" 10 10° 10° 10° 10° 10° ?0‘6 10° 10™ 10° 10° 10" 10°
Noise Intensity D Noise Intensity D
15 15

[ang P
- | t
0.5 0.5 \ /
\\‘ ¥
0 . . - N
107 10 10" 10° $o* 0% 10° 107 107 107 108
Noise Intensity D Noise Intensity D

FIG. 3. (Color onling Stochastic and coherence resonance in  FIG. 4. (Color onling Double coherence resonance observed in
the Rulkov model. The coefficient of variatidR is plotted as @ Rulkov neuron model undefa) additive and(b) multiplicative
function of the noise intensity fdi) additive external perturbations noise driving, fora=1.9989(circles, 1.999(diamonds, and 1.9992
with forcing amplitude A=0.025 and forcing frequency =27 (triangles.

X 1074 257X 1074, 37X 1074 3.5, x 1074, and 47X 10™* (from
top to bottom), and(b) multiplicative modulations a4=0.0099 and  plot R as a function of the noise intensiy for multiplica-
w=4mwX 10 (circles, 87X 107 (squarey 1.2 x 1073 (triangles,  tive or parametric noise and periodic perturbations. Here we
and 1.6rx 102 (diamonds. see that the double-valley resonance curve that appears at
low frequency is replaced by a single-valley one as the fre-
ing. It is shown clearly that the forcing frequency has a drasquency increases. While the position of CR remains un-
tic impact on SR, but little effect on CR. As the forcing changed, the location of SR shifts to larger noise intensity,
frequency is increased and is approaching the firingwhich is consistent with the requirement of a time-scale
nonfiring boundary from below in the amplitude-frequency match between the first-passage time induced by noise and
space, the SR becomes stronger and disappears once the fitee period of external forcing, but in sharp contrast with the
quency is in the firing region. At first glance, it seems to becase of additive forcing.
rather puzzling that the location of SR shifts to lower values (2) Double CR in small-amplitude oscillation regimes
of noise intensityD, instead of to larger values as required the context of CR, the condition for the occurrence of mul-
by the match between the first-passage time induced by noigiple resonances at different noise intensities may be attrib-
and the intrinsic oscillation period of the system. Neverthe-uted to the existence of multifrequency oscillations. Figure 4
less, if we take into account the fact that the system apshows the double CR for the Rulkov neuron model in the
proaches the firing domain asincreases, it is obvious that absence of external periodic forcing, i.850. We find that
less noise is required when the system is closer to the firinthe first CR occurs only within a narrow range of the control
threshold. Another intriguing phenomenon is the noiseparametera, and its coherence effect is much weaker than
induced phase-locking patterns as illustrated by the staircagbat of the seconéthe standardCR. It is seen that the opti-
structure of the resonance curve for the noise intensity bemal noise intensity for the occurrence of OB, decreases
tweenD=10"% and 102 For instance, at forcing frequency with increasinga. The mechanism of the leftmost resonance
w=47x10% we find that wyw,=2:1 for 108<D valley may be understood as follows. For 1.998<1.999
<10 and wy,wp,=3:1 for 10°<D<1073, approxi- the Rulkov model system exhibits low-amplitude oscillation,
mately. The optimal noise intensity for CR, on the otherand its frequency decreases with increasin§o it is easy to
hand, remains almost unchanged. As the forcing frequency isnderstand why the optimal noise intensity at which the
further increased, the system enters the frequency-sensitiveise-induced oscillation matches the intrinsic low-
firing regimes, where weak noise can destroy the regulaamplitude oscillation moves to smaller noise strengthaas
spiking, and generate a kind of bursting mode. It is remarkincreases. Interestingly we find this phenomenon for Rulkov
able that in the firing regime we still observe CR, for the model with additive and multiplicative noise, as well. We
system’s response at the intermediate through large noise imotice that for the CO+@catalytic oxidation reaction sys-
tensity is completely dominated by the noise. In Figh)3ve  tem discussed if9], there exists also a low-amplitude oscil-
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lation range, with its amplitude decreasing with the distance
of the control parameter to the bifurcation point. Since the
peak height of the resonant oscillation is used as a measure |y
in that work, it is difficult to infer the mechanism behind the ! / 4
very intriguing double-CR phenomenon, where the leftmost N
CR appears to be stronger than the rightmost one. In our
case, the intrinsic frequency of small-amplitude oscillation is % f
a function of the bifurcation parametar Weak noise cannot ’ /
perturb the system’s dynamics, and strong enough noise will 0.25 y
drive the system into oscillatory regimes. Thus, there exists ~
an optimal noise intensity that produces this weak-noise CR. ‘ :
(3) CR in oscillatory regimesFor the system control pa-

rametera>1.999, the Rulkov model displays spikes, or
large-amplitude oscillations. As already illustrated in Fig. 4, 1.5
CR may be observed in this parameter regimes. In Fig. 5 we (b) /’*\_’
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plot R against the noise intensif, for a slightly larger than \
2. This happens because the oscillation in this parameter 1 I\
range is very weak, and is strongly affected by external per- | N
turbations. Interestingly this internal SR5] occurs at the & / A
same noise intensity as the CR whar 2. As a increases 05 ; /
further into the strong-oscillation regime, the peak related to / /
noise-induced irregularity disappears. An inspection of the
time evolution of the system variables fas 2.0 shows that o Ll S
noise produces irregular suppression of firingDat0.001, 107 107 107 10
and more regular firing is recovered Bgg=0.02, approxi- Noise Intensity D
mately.

In conclusion, in this work we present a detailed numeri- FIG. 5. (Color onling Coherence resonance in the oscillatory
cal analysis of multiple-resonance behaviors in the Rulkovegimes for Rulkov model subject t@) additive and(b) multipli-
neuron model, which proves to be an efficient vehicle forcative stochastic and periodic perturbations. The system control pa-
instigation of the dynamical response of more complex exfametera=2.0, 2.0025, 2.005, 2.01, and 2.05 (@, anda=2.0,
citable neuron model systems to various stochastic and perf-001, 2.005, 2.01, and 2.1 {b) (from top to bottor).
odic stimuli. We studied the conditions for which the system
can respond to different noise through SR and CR. We exence resonance may occur for different physical situations.
plained the mechanism for the appearance of double CR dsor the FitzHugh-Nagumo model it occurs at low noise in
the existence of a continuously changed oscillation frethe presence of damped subthreshold oscillati@é@$ while
guency as a function of the control paramegeafter the for the leaky integrate-and- fire model, the incoherence
Hopf bifurcation. The CR in the firing regimes and CR in the maximization appears in the noise-activated firing regime for
oscillatory states are attributed to the weak, initial stage ofufficiently small values of the absolute refractory period
the oscillation, which turns out to be very vulnerable to ex-[16]. From the time evolution of the system variable, the
ternal noise. Another interesting phenomenon exhibited bynaxima ofR for the Rulkov model seem to be related to
the Rulkov neuron model is anticoherence or incoherencthe transition from random bursting and complete irregular
maximization, characterized B> 1[16,17. The anticoher-  spiking.
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